a2 United States Patent

Lagergren et al.

US009239814B2

US 9,239,814 B2
*Jan. 19,2016

(10) Patent No.:
(45) Date of Patent:

(54) SYSTEM AND METHOD FOR CREATING OR (2013.01); GOGF 9/4401 (2013.01); GOGF
RECONFIGURING A VIRTUAL SERVER 9/45545 (2013.01); GO6F 9/45558 (2013.01);
IMAGE FOR CLOUD DEPLOYMENT GOGF 9/45533 (2013.01); GOGF 2009/4557

(2013.01);

(71) Applicant: ORACLE INTERNATIONAL (Continued)

ggRPg RATION, Redwood Shores, (58) Field of Classification Search
Us) CPC GOG6F 9/45558; GOGF 9/45533; GO6F
(72) Inventors: Marcus Lagergren, Lidingo (SE); USPC 2009/740595 /Z;l lG ggg 82/33
Mikael Vidstedt, Santa Clara, CA (US) e 11,222,
See application file for complete search history.
(73) Assignee: ORACLE INTERNATIONAL .
CORPORATION, Redwood Shores, (56) References Cited
CA (US) U.S. PATENT DOCUMENTS
(*) Notice: Subject to any disclaimer, the term of this 7,080,378 Bl 7/2006 Noland
patent is extended or adjusted under 35 7,293,168 B2 11/2007 Maeda
U.S.C. 154(b) by 0 days. (Continued)
z]l:l;l E?tent is subject to a terminal dis- FOREIGN PATENT DOCUMENTS
EP 2019358 1/2009
(21) Appl. No.: 14/164,503
OTHER PUBLICATIONS

(22) Filed: Jan. 27, 2014))))

International Searching Authority, International Search Report and

(65) Prior Publication Data Written Opinion for PCT International Patent Application No. PCT/

US2010/036732, Nov. 30, 2010, 11 pages.
US 2014/0143389 Al May 22, 2014 .
(Continued)
Related U.S. Application Data Primary Examiner — Hieu Hoang

(63) Continuation of application No. 13/445,722, filed on (74) Attorney, Agent, or Firm — Tucker Ellis LLP
Apr. 12, 2012, now Pat. No. 8,639,787, which is a
continuation-in-part of application No. 12/476,103, (57 ABSTRACT
filed on Jun. 1, 2009, and a continuation-in-part of A gystem and method to convert a software application, such

(Continued) as a Java application into a virtual server image that is suitable
for cloud deployment. In accordance with an embodiment,
the system and method allows for building a hypervisor appli-

(51) Imt.ClL Y gahyp pp
GO6F 15/177 (2006.01) ance containing a virtual machine running an application. In
GO6F 15/16 (2006.01) particular, the hypervisor appliance can be compatible with

(Continued) any hypervisor for server virtualization and the application
virtual machine can be a Java Virtual Machine (JVM).

(52) US.CL
CPC ..o GOG6F 15/177 (2013.01); GO6F 8/63 21 Claims, 12 Drawing Sheets

Read Configuration File for Software Application Code and Data

Create Memory Space for Virtual Server Image |/‘\/ 154
Write Bootloader Code into Memory Space l’\, 156

!

‘Write Non-bootable Component of Java Virtal Machine into Memory Space |/\/ 160

!

‘Write Software Application Code and Data into Memory Space

i |/\/)

Link Bootlcader Code to Bootable Component of Java Virtual Machine |/\/ 164

‘ Write Bootable Component of Java Virtual Machine into Memory Space f’\, 158

!

Link Bootable Component of Java Virtual Machine to Non-bootable Component |/\,, 166

i
l’\/ 168

I ‘Write Memory Space to Virtual Server Image

US 9,239,814 B2
Page 2

Related U.S. Application Data

2008/0263258 Al 10/2008 Allwell
2008/0271016 Al 10/2008 Chess

application No. 12/853,053, filed on Aug. 9, 2010, now 2008/0295092 Al 11/2008 Tan
Pat. No. 8,776,053, 2009/0006534 Al* 1/2009 Fries etal.ccccoo... 709/203
2009/0036111 Al 2/2009 Danford
(60) Provisional application No. 61/476,216, filed on Apr. 2009/0070752 Al 3/2009 Aplern
15, 2011, provisional application No. 61/246,050, %883?8?33223 i}* 3@883 ghltge? th(al 718/1
apuntzakis
filed on Sep. 25, 2009. 2009/0113423 Al 4/2009 Hiltgen
2009/0164994 Al 6/2009 Vasilevsky
(51) Int.CL 2009/0172662 Al 7/2009 Liu
GOG6F 9/44 (2006.01) 2009/0249284 Al 10/2009 Antosz
GOGF 97445 (2006.01) 20090776771 A1 1112000 Niekol
1CKolov
GOGF 9/455 (2006.01) 2009/0300151 Al 12/2009 Friedman
(52) U.S.CL 2009/0319688 Al* 12/2009 Mason etal. 709/242
CPC ..o GOG6F 2009/45562 (2013.01); GO6F 2010/0027552 Al 2/2010 Hill
2009/45575 (2013.01) 2010/0070970 Al 3/2010 Hu
2010/0095297 Al 4/2010 Sethi
. 2010/0115174 Al* 52010 Akyoletal. 710/316
(56) References Cited 2010/0162238 Al 6/2010 Warfield
2010/0223383 Al* 9/2010 Sal tal. oo 709/226
U.S. PATENT DOCUMENTS 2010/0250744 AL* 92010 Hadad etal - 709/226
2010/0287280 Al 11/2010 Sivan
8,156,301 Bl ~ 4/2012 Khandelwal 2010/0306599 Al* 12/2010 Cota-Robles et al. 714/48
8,176,486 B2 5/2012 Husain 2010/0306772 Al 12/2010 Arnold
8,219,653 Bl 7/2012 Keagy 2012/0151198 Al 6/2012 Gupta
8,321,558 Bl 11/2012 Sirota 2013/0276068 Al 10/2013 Gupta
8,381,264 Bl 2/2013 Corddry
8,458,717 Bl 6/2013 Keagy OTHER PUBLICATIONS
8,468,535 Bl 6/2013 Keagy
2003/0217131 Al 11/2003 Hodge Krsul, et al., VMPlants: Providing and Managing Virtual Machine
2005/0198303 Al 9/2005 Knauerhase Execution Environments for Grid Computing, 2004, 12 pages.
2006/0010176 Al 1/2006 Armington Sapuntzakis, et al., Virtual Appliances for Deploying and Maintain-
2007/0033586 Al 2/2007 Hirsave :
. ing Software, 2003, 15 pages.
2007/0078988 Al 4/2007 Miloushev Sapuntzakis, et al., Virtual Appliances in the Collective: A Road to
2007/0234302 Al 10/2007 Suzuki et 0y :
2007/0294676 Al 12/2007 Mellor assle-Fee Computing, » © pages. .) .
; agoutis, et al., Galapagos: Automatically Discovering Application-
2007/0300205 Al 12/2007 Scian Magoutis, et al., Gal Automatically D Applicat
2008/0059556 Al 3/2008 Greenspan Data Relationships in Networked Systems, 2007, 6 pages.
2008/0201414 Al 82008 Husain
2008/0244596 A1 10/2008 Mansker et al. * cited by examiner

U.S. Patent

Jan. 19, 2016 Sheet 1 of 12 US 9,239,814 B2

File System 108

Appliance Configuration 110

Software Application Code 112

Software Application Data 114

JVM Appliance Builder
106

~

A 4
Virtual Server Image 116

BootLoader 118

Image File Systcm Storage 120

Bootable Component of JVM 121
Non-bootable Component of TVM 122
Software Application Code 124

Software Application Data 126

Operating System 104

Computer 102

FIGURE 1

U.S. Patent Jan. 19, 2016 Sheet 2 of 12 US 9,239,814 B2

Read Configuration File for Software Application Code and Data N 152
v
Create Memory Space for Virtual Server Image TN 154
v
Write Bootloader Code into Memory Space N\ 156
v
Write Bootable Component of Java Virtual Machine into Memory Space N_ 158
y
Write Non-bootable Component of Java Virtual Machine into Memory Space {7 _- 160
v
Write Software Application Code and Data into Memory Space N 162
v
Link Bootloader Code to Bootable Component of Java Virtual Machine N_ 164
v
Link Bootable Component of Java Virtual Machine to Non-bootable Component 7 _- 166
v
Write Memory Space to Virtual Server Image _~ 168

FIGURE 2

U.S. Patent Jan. 19, 2016 Sheet 3 of 12 US 9,239,814 B2

Read Contfiguration File for Software Application Code and Data /\/ 202
v
Create First Memory Space for Virtual Server Image N 204
v
Write Bootloader Code into First Memory Space /\/ 206
v
Write Bootable Component of Java Virtual Machine into I'irst Memory Space /_/ 208
v
Create Second Memory Space for Virtual Server Image /\/ 210
v
Write Non-bootable Component of Java Virtual Machine inlo Memory Space /\/ 212
v
Write Software Application Code and Data into Second Memory Space /-\/ 214
v
Link Bootloader Codc to Bootable Component of Java Virtual Machine /\/ 216
v
Link Bootable Component of Java Virtual Machine to Non-bootable Component /_/ 218
v
Write Second Memory Space into First Memory Space /\/ 220
v
Wrile First Memory Space Lo Virtual Server Image N\ 22

FIGURE 3

US 9,239,814 B2

Jan. 19, 2016 Sheet 4 of 12

U.S. Patent

(453

80¢

90¢

/\/

v 34NoI4

N
o)

<douel|dde/>

<sse|d-ulew/>11e}SIaA19g2160|gop\<SSe|o-ulew>
<JBA-AUD/>RJeP/I9AI9S<, V1VYA ddV..=9Wweu Jea-Aud>

<yjedsse|o/>1el-o160|qom/1on19s<yjedsse|o>
<sBaie-wal/>|9jeted: 06X~ NG L XwWYX-<sBie-WA[>
<douel|dde>

Y0¢

U.S. Patent Jan. 19, 2016 Sheet 5 of 12 US 9,239,814 B2

Bootloader 408
Bootable Comp t
Application Appliance oota 0418mP0nCn
Configuration Builder >
404 402

Bootloader 408 Memory Space 406

Bootable Component

410 Memory 400

Non-Bootable

Component 414

Application Code

Application Data

Configured Bootloader 416
L Memory Space 406
T T T T Configured Bootable
M 400
etory Component 418

Non-Bootable
Component 414

Application Code
Application Data

Virtual Server
Tmage File Memory Space 406

L O T
Memory 400

F———————————————

FIGURE 5

U.S.

Patent Jan. 19,2016

Application
Configuration
404

Bootloader 408

F————-

410

1
|
BRootable Component |
|
|
|

Non-Bootable
Component 414

Application Data

|
|
|
Application Code :
|
|
|
|

Memory 400

Conlfigured Bootloader 416

Configured Bootable
Component 418

Non-Bootable
Component 414

Application Code
Application Data

First Memory Space 430

Memory 400

Appliance
Builder

Sheet 6 of 12

US 9,239,814 B2

402

—’\ Virtual Server
Image File

FIGURE 6

Bootloader 408

|

I | Bootable Component
: 410
|

L First Memory Space 430

Memory 400

Configured Bootloader 416

1

|
Configured Bootable | |
Component 418 |

|

|

Tirst Memory Space 430

Non-Bootable
Component 414

Application Data

|
I I
I I
: I
| Application Code :
I I
I I
I I
I I

Memory 400

420

U.S. Patent

Administrator
504

Jan. 19, 2016

Sheet 7 of 12

508

Management Tool

Virtual Server
Image File
502

Virtual Server
Image File 502

Hypervisor 512

Computer 510

Image File 502

Virtual Server

Hypervisor 522

Computer 520

Virtual Server
Image File 502

Hypervisor 532

Computer 530

Virtual Server
Tmage File 502

Hypervisor 542

Computer 540

FIGURE 7

US 9,239,814 B2

U.S. Patent

Jan. 19, 2016

‘?02 Computer

Sheet 8 of 12

US 9,239,814 B2

{104 Virtual Server Image Updater

s0s Image File System Mounter
510 Maodifier

626 Virtusl Server Image Paich

-

626 [ipdate Brotable Fart of VM

630 Reconfigure Bootable Part of VM
632 Ulpdate JVM

634 Reconfigure JVM

63z Update Software Application Code
640 PReconfigure Applivation

642 Gonerabed Invorace Patch

644 Restore Bootable Part of JIVM

646 Reconfigure Bootable Part of IVM
648 Restore IVM

650 Reconfigure JVM

652 Restore Software Application Code
654 Reconfigure Application

612 Virtual Server Image
%

l614 Bootstrap configuration

L616 Image File System

618 Bootabde Part of JYM

620 Non-Bootable Part of f¥M
622 Sopllware Application Code
624 Software Application Data

FIGURE 8

U.S. Patent Jan. 19, 2016 Sheet 9 of 12 US 9,239,814 B2

Read Virtual Server Image Patch File AT 702

Mount file system within virtual server image T~ 704

Tf pateh, requicrs, replace the bootable part of the VM ™_..706
L

I patech mequiers, reconfigure the bootable part of the JYM 4 708

It paich requiers, replace the VM T~_.710

If patch requiers, reconfigure the WM [~ _712

I patch requires, update the software application code T~_.714
\

If pateh requires, reconfigure software application ~_.716

If putch requires, veconfigime the bootstrap T 718

Crente an inverse virtual server image patch, that when applied to the Py
virtual server image will restore its oniginal siate, ~ 720

FIGURE 9

U.S. Patent Jan. 19,

2016 Sheet 10 of 12 US 9,239,814 B2

Updater

800 Wirtual Server Jmage {1804 Virtual Sarver Image

Patch
Te—

\

802 Virtual Server [moge

806 Inverse Virtual Server

Image Patch
——T—
ﬂ\"
f \ R\
810 HyperVisor 826 Hyper¥isor
812 HyperVisor 828 HyperWisor
814 HyperVisor 824 Computer
818 HyperVisor
808 Computer

820 HypatVisor

807 Cloud

822 HyperVisor

816 Computer

FIGURE 10

U.S. Patent Jan. 19, 2016 Sheet 11 of 12 US 9,239,814 B2

900 Virtual Server lmage

Parch
O
904 Computer
o
910 Virtual Server Imoge | |914 Updater N N
- 906 Computer
912 HyperVisor \
918 Virtual Server Image 922 Updater 908 Cnmputcr

920 HyperVisor

902 Computer

\. 901 Cloud

916 Inverse ’Vimml bm'ver
Image Patch

l
i

FIGURE 11

U.S. Patent Jan. 19, 2016 Sheet 12 of 12 US 9,239,814 B2

1000 Virfoal Server Tmage With Partitions

\

P

l 1002 Booistrap configuration (Bootsector) J

1004 Image File System

1008 pootable Fart of j¥M
1010 Non-Bogtable Part of JYM

1012 Software Application Code
1014 Softwarc Appllcation Dala

1016 Virtual Server Image, no partitions

1018 Tmage File System

1020 Bosotstrap conflauration
1024 Bootable Part of JVM

1026 Mon-Bootabie Hart of | VM
1028 Software Aplication Code
1030 Software Application Diata

FIGURE 12

US 9,239,814 B2

1
SYSTEM AND METHOD FOR CREATING OR
RECONFIGURING A VIRTUAL SERVER
IMAGE FOR CLOUD DEPLOYMENT

CLAIM OF PRIORITY

The present application is a continuation of U.S. patent
application Ser. No. 13/445,722, titled “SYSTEM AND
METHOD FOR CREATING OR RECONFIGURING A
VIRTUAL SERVER IMAGE FOR CLOUD DEPLOY-
MENT?, filed Apr. 12, 2012, now U.S. Pat. No. 8,639,787,
issued on Jan. 28, 2014, which claims the benefit of priority to
U.S. Provisional Patent Application No. 61/476,216, titled
“SYSTEM AND METHOD FOR CREATING OR RECON-
FIGURING A VIRTUAL SERVER IMAGE FOR CLOUD
DEPLOYMENT?™, filed Apr. 15, 2011; and is a continuation-
in-part of U.S. patent application Ser. No. 12/476,103, titled
“SYSTEM AND METHOD FOR CONVERTING A JAVA
APPLICATION INTO A VIRTUAL SERVER IMAGE FOR
CLOUD DEPLOYMENT”, filed Jun. 1, 2009, which is now
U.S. Pat. No.: 8,856,294, issued on Oct. 7, 2014; and is also a
continuation-in-part of U.S. patent application Ser. No.
12/853,053, titled “SYSTEM AND METHOD TO RECON-
FIGURE A VIRTUAL MACHINE IMAGE SUITABLE FOR
CLOUD DEPLOYMENT?”, filed Aug. 9, 2010, which is now
U.S. Pat. No.: 8,776,053, issued on Jul. 8, 2014, which claims
the benefit of priority to U.S. Provisional Patent Application
No. 61/246,050, titled “SYSTEM AND METHOD TO
RECONFIGURE A VIRTUAL MACHINE IMAGE SUTT-
ABLE FOR CLOUD DEPLOYMENT”, filed Sep. 25, 2009,
each of which applications are herein incorporated by refer-
ence.

COPYRIGHT NOTICE

A portion of the disclosure of this patent document con-
tains material which is subject to copyright protection. The
copyright owner has no objection to the facsimile reproduc-
tion by anyone of the patent document or the patent disclo-
sure, as it appears in the Patent and Trademark Office patent
file or records, but otherwise reserves all copyright rights
whatsoever.

FIELD OF INVENTION

The invention is generally related to application servers
and virtual machines, and particularly to a system and method
for creating or reconfiguring a virtual server image for cloud
deployment.

BACKGROUND

Cloud computing is generally defined as a form of com-
puting in which dynamic and/or virtualized resources are
provided as services over a distributed network of physical
computing machines or servers, such as the Internet. Client
processes, software applications, and users thereof, are not
required to have explicit knowledge or control over the tech-
nology infrastructure within the cloud. Instead, they can
request or call upon services from the cloud, which are then
provided by other providers within the cloud. As such, cloud
computing promises software application developers with an
easy means way of deploying their application to run simul-
taneously upon thousands of servers in a cloud.

To date, different solutions of deploying software applica-
tions in a cloud have emerged that are generally cloud-spe-
cific, i.e. the applications need to conform to a cloud/hyper-

10

15

20

25

30

35

40

45

50

55

60

65

2

visor specific application program interface (API) to run on
their servers. Using this methodology, it is not easy for a cloud
customer to migrate an application from one cloud provider to
another cloud provider.

Cloud providers can address this problem somewhat by
offering hypervisors in their clouds. Generally, a hypervisor
acts as a layer between a server’s hardware and its operating
system. This provides an abstraction layer that allows each
physical server to run one or more virtual servers, and effec-
tively decouples the operating system and its applications
from the underlying physical server. When used in a cloud,
the cloud customer can supply a virtual machine image which
contains the customer application to the hypervisor. The
image will then be booted in potentially thousands of hyper-
visors in the cloud. Since there are generally only a few
hypervisor types this approach standardizes the format for
how the application developer has to package the application.
Instead of creating a standalone application that fits into a
specific cloud API, the developer now has to create a suitable
virtual machine image.

However, the underlying problem remains as to how a
software developer can convert their own, e.g. Java, applica-
tion into a virtual machine image that can be easily deployed
on many machines in a cloud. With current development tools
the developer must create a virtual machine image that boots
(or resumes) into the Java application. Generally, a virtual
machine image has to be constructed by booting an operating
system inside a hypervisor. From within this virtual operating
system the boot process must be configured to start the appli-
cation. Then the virtual machine is powered down, and a copy
of the virtual machine image (which includes the disk) dis-
tributed to machines that run virtual images in a cloud. This is
a very time consuming process, and is an area that embodi-
ments of the present invention are intended to address.

SUMMARY

Disclosed herein is a system and method to convert a soft-
ware application, such as a Java application into a virtual
server image that is suitable for cloud deployment. In accor-
dance with an embodiment, the system and method allows for
building a hypervisor appliance containing a virtual machine
running an application. In particular, the hypervisor appliance
can be compatible with any hypervisor for server virtualiza-
tion and the application virtual machine can be a Java Virtual
Machine (JVM).

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1 shows an illustration of a system in accordance with
an embodiment.

FIG. 2 shows aflowchart of a method inaccordance with an
embodiment, for generating a JVM appliance.

FIG. 3 shows aflowchart of a method inaccordance with an
alternative embodiment, for generating a JVM appliance.

FIG. 4 shows an illustration of the contents of an appliance
configuration in accordance with an embodiment.

FIG. 5 shows an illustration of how a virtual server image
is created, in accordance with an embodiment.

FIG. 6 shows an illustration of how a virtual server image
is created, in accordance with an alternative embodiment.

FIG. 7 shows an illustration of how a virtual server image
can be deployed to a cloud, accordance with an embodiment.

FIG. 8 shows an illustration of a system in accordance with
an embodiment.

FIG. 9 shows a flowchart of a method inaccordance with an
embodiment, for reconfiguring a virtual server image.

US 9,239,814 B2

3

FIG. 10 shows an illustration of how a virtual server image
can be reconfigured and then deployed to a cloud, in accor-
dance with an embodiment.

FIG. 11 shows an illustration of how virtual server images
already deployed in a cloud can be reconfigured, in accor-
dance with an embodiment.

FIG. 12 shows an illustration of how a virtual machine
image can be reconfigured from one hypervisor format to a
different hypervisor format.

DETAILED DESCRIPTION

Disclosed herein is a system and method to convert a soft-
ware application, such as a Java application into a virtual
machine image that is suitable for cloud deployment. In
accordance with an embodiment, the system and method
allows for building a hypervisor appliance containing a sec-
ond virtual machine running an application. In particular, the
hypervisor appliance can be compatible with any hypervisor
for server virtualization and the application virtual machine
can be a Java Virtual Machine (JVM).

In accordance with an embodiment, the system includes an
appliance builder application, that allows the system to take a
Java application, and convert the application into a virtual
server image that can then be deployed in a hypervisor, or for
example within a cloud of hypervisors. In accordance with an
embodiment, the generated virtual server image is a combi-
nation of a bootable part of a Java virtual machine, and a
non-bootable part of the Java virtual machine, wherein the
bootable part can subsequently load the non-bootable part.
The non-bootable part of the Java virtual machine can then
execute a Java application stored in the same virtual server
image.

The appliance builder addresses the following problems:

Efficiency of creating the virtual server image. The boot-
able part of the Java virtual machine is significantly
smaller than a general purpose operating system.

Fast booting of the Java application. The bootable part of
the Java virtual machine has to perform significantly less
work before it can start the non-bootable part of the Java
virtual machine than a general purpose operating sys-
tem.

Ease of generating virtual machine images for any hyper-
visor type, for example VMWare Player, Workstation
and ESX, and OracleVM. The builder itself can be writ-
ten in Java for platform transparency.

Significantly faster than alternative solutions that are based
on actually running the hypervisor and setting up the
application environment, and then taking a snapshot
using the hypervisor.

A typical use of the appliance builder would be to take an
application intended for deployment on an application server
(such as a Weblogic server application that serves Web
pages), and convert the application into an appliance. For
example, a Weblogic server can be set up and started using the
command:

java-cp .. . -jar server/weblogic.jar server/data

In accordance with an embodiment, an appliance configu-
ration can be created for this setup as shown below:

<?xml version="1.0" encoding="UTF-8"?>
<applianceconfig xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-

10

25

30

35

40

45

60

65

4

-continued

instance"” xsi:noNamespaceSchemal ocation="applianceconfig.xsd"
version="2.5">
<virtual-appliance memory="256 MB" cpus="1" disk="160 MB">
<vm-name>default-vm</vm-name>
<working-dir>/weblogic</working-dir>
<java-arguments™>-jar server/weblogic.jar server/data</java-
arguments>
<network>
<nics>
<nic type="bridged"/>
</nics>
</network>
</virtual-appliance>
</applianceconfig>

An alternative example of an appliance configuration file,
for a different example application, is shown below:

<applianceconfig xmlns:xsi="http://www.w3.org/2001/
XMLSchema-instance"
xsi:noNamespaceSchemal.ocation="applianceconfig.xsd" version="2.5">
<virtual-appliance memory="1 GB" cpus="1" disk="256 MB">
<vm-name>default-vm</vm-name>
<working-dir>/application/myworkdir</working-dir>
<java-arguments>-cp $JAVA_HOME/lib/tools jar:. -Xmx128m -jar
MyApp.jar arg0 argl arg2</java-arguments>
<nfs-mounts>
<nfs-mount uid="513" gid="503">
<mount-point>/test</mount-point>
<server>file01.jrockitve.oracle.com</server>
<server-path>/temp/user/testdir</server-path>
</nfs-mount>
</nfs-mounts>
<kernel-arguments>
<entry key="logLog" value="all"/>
<entry key="netTcpTtl" value="20"/>
</kernel-arguments>
<network>
<dns>
<server-order> <server ip="172.22.17.100"/>
<server ip="192.168.1.2"/>
</server-order>
<lookup-order>
<name suffix="us.oracle.com'/>
<name suffix="jrpg.oracle.com’/>
</lookup-order>
</dns>
<nics>
<nic network="eth0" type="bridged">
<ip>172.23.22.22</ip>
<netmask>255.255.255.0</netmask>
<gateway>172.23.22.1</gateway>
<mac>12:ab:34:cd:56:ef</mac>
</nic>
</nics>
<hostname>example.oracle.com</hostname>
</network>
<locale-data>
<locale>en_US</locale>
<timezone>US/Pacific</timezone>
<encoding>ISO-8859-1</encoding>
<flocale-data>
<fvirtual-appliance>
<jrockitve-image-url>ftp://jrockitve/jrockitve.bin</jrockitve-image-
url>
<java-application-dir>path_to_java_application_dir</java-
application-dir>
</applianceconfig>

As described in further detail below, the appliance configu-
ration can then be used to create a virtual server image for
deployment in a cloud.

FIG. 1 shows an illustration of a system in accordance with
an embodiment of the invention. As shown in FIG. 1, the
system includes a computer 102 with a general operating
system 104 executing thereon. The operating system main-

US 9,239,814 B2

5

tains a file system 108, which in turn comprises an appliance
configuration 110 or configuration file, a software application
code 112, and a software application data 114.

In accordance with an embodiment, a Java virtual machine
appliance builder 106, or a builder logic within the system,
uses the appliance configuration 110 to create a virtual server
image 116, which in turn comprises a bootloader 118; and an
image file system storage 120.

The image storage comprises a bootable component of the
Java virtual machine 121, a non-bootable component of the
Java virtual machine 122, the software application code 124,
and the software application data 126. The virtual server
image can then be deployed within a cloud, and the non-
bootable component of the Java virtual machine used to
execute the Java application stored within the same virtual
server image.

FIG. 2 shows aflowchart of a method in accordance with an
embodiment, for generating a Java virtual machine (JVM)
appliance. In accordance with an embodiment, the appliance
builder is first started on the system as a standard Java appli-
cation, such as:
java-jar appliance_builder.jar [hypervisor_type] [config_file]

As shown in FIG. 2, in step 152 the appliance builder reads
the configuration file, and uses the instructions from the com-
mand line to determine which type of hypervisor is selected,
and a configuration file to locate a software application code,
a software application data, network settings, time and date
and network file systems. In step 154, the appliance builder
creates a memory space within the system for use by the
virtual server image. In accordance with one embodiment
such a memory space can reside in RAM. In accordance with
an alternative embodiment the memory space can be a file in
afilesystem. Instep 156, the virtual server image is initialized
with the bootloader code. Whether a bootloader code is
placed into the virtual server image depends on which type of
hypervisor type was selected when first starting the appliance
builder.

Some hypervisors (for example, the VM Ware hypervisor)
use virtual server images that are effectively a snapshot of the
sectors of a virtual hard disk. In accordance with an embodi-
ment, for these hypervisors the bootloader code can be writ-
ten into the first sector of the first bootable partition of the
virtual hard disk. A bootloader, such as GRUB (GRand Uni-
fied Bootloader, provided as part of the GNU project), or a
different type of bootloader, can be used for this purpose. The
bootloader will then load the bootable part of the JVM from
the file system in the virtual server image. If the GRUB
bootloader is used, then the bootloader will use a configura-
tion file located at /boot/grub/menu.cfg in the file system in
the virtual server image, to find the bootable part of the JVM.
Other types of bootloaders can use alternate configuration
means.

Other hypervisors (for example, the Xen and Oracle VM
hypervisors) use a standard file system format (for example,
ext2) for their client images. In accordance with an embodi-
ment, these hypervisors behave as GRUB or as a bootloader,
and will read the /boot/grub/menu.cfg themselves. Therefore
the virtual server images for these hypervisors do not contain
the bootloader code.

Next, in step 158, a bootable component of the Java virtual
machine is written to the virtual server image in the memory
space.

In step 160, a non-bootable component of the Java virtual
machine is written to the memory space together with, in step
162, the application code and data. In step 164, the bootloader
code is then configured to execute the bootable component of
the Java virtual machine. In one embodiment this can be done

40

45

6

by updating /boot/grub/menu.cfg. In an alternative embodi-
ment this can be done by updating the bootloader code itself.
In step 166, the bootable component of the Java virtual
machine is then configured to execute the non-bootable part
of the Java virtual machine. The bootable component of the
JVM is updated with the location of the non-bootable part of
the JVM and the other information from the configuration file
described earlier. In one embodiment this can be done by
updating a file in the file system 120. In an alternative embodi-
ment this can be done by updating the bootable component of
the JVM itself.

In step 168, if the memory space was allocated in RAM,
then the memory space is then written to a virtual server
image. If the memory space was a file, then that file is now the
virtual server image. This virtual server image can then be
deployed throughout a cloud of hypervisors using the man-
agement tools generally provided with such cloud environ-
ments.

FIG. 3 shows aflowchart of a method inaccordance with an
alternative embodiment, for generating a Java virtual
machine (JVM) appliance. In particular, FIG. 3 illustrates the
use of two or more memory spaces, which can be subse-
quently copied, concatenated, or otherwise used to prepare
the virtual server image. As with the example described
above, depending on the hypervisorused, the client image can
either contain the bootloader code (for example, VMware), or
can eliminate the need for the bootloader code (for example,
Xen and Oracle VM).

As shown in FIG. 3, in step 202, the appliance builder reads
the configuration file, and uses the instructions from the com-
mand line file to determine which type of hypervisor is
selected, and a configuration file to locate a software appli-
cation code, a software application data, network settings,
time and date and network file systems. In step 204, the
appliance builder creates a first memory space within the
system for use by the virtual server image. In step 206, the
virtual server image is initialized with the bootloader code. In
step 208, abootable component of the Java virtual machine is
written to the virtual server image. In step 210, a second
memory space is created within the system that will contain
the image file system storage. In step 212, a non-bootable
component of the Java virtual machine is written to the sec-
ondary memory space together with, in step 214, the appli-
cation code and data. In step 216, the bootloader code is then
configured to execute the bootable component of the Java
virtual machine. In step 218, the bootable component of the
Java virtual machine is then configured to execute the non-
bootable part of the Java virtual machine. In step 220, the
second memory space is then written into the first memory
space, and in step 222, the first memory space is then written
to a virtual server image.

FIG. 4 shows an illustration of the contents of an appliance
configuration in accordance with an embodiment. As shown
in FIG. 4, the appliance configuration 302 can be stored in a
file on a computer readable medium or in a memory and
includes, in accordance with an embodiment, appliance tags
304, indicating that the configuration file is intended to
specify a virtual server image; a jvm-arguments component
306 defining how the non-bootable component of the Java
virtual machine will be started; an application classpath com-
ponent 308 defining the location of the application code; an
application environment-variable component 310 defining
the location of the application data; and additional compo-
nents 312 defining additional variables.

FIG. 5 shows an illustration of how a virtual server image
is created, in accordance with an embodiment and the method
described in FI1G. 2. As shown in FIG. 5, the appliance builder

US 9,239,814 B2

7

402 reads the configuration file 404, and uses the instructions
therein to determine the type of hypervisor, and to locate a
software application code and software application data. A
memory space 406 is created within the system memory 400
for use by the virtual server image. The memory space/virtual
server image is initialized with bootloader code 408, and a
bootable component of the Java virtual machine 410 is writ-
ten therein. A non-bootable component of the Java virtual
machine 414 is then written therein, together with the appli-
cation code and data. The bootloader code is then configured
416 to execute the bootable component of the Java virtual
machine, and the bootable component of the Java virtual
machine is configured 418 to execute the non-bootable part of
the Java virtual machine. The memory space is then written to
a virtual server file image 420, which can then be deployed
throughout a cloud of hypervisors. In accordance with an
alternative embodiment the memory space can be transmitted
over a network to a cloud for deployment without storing a
local file image.

FIG. 6 shows an illustration of how a virtual server image
is created, in accordance with an alternative embodiment, and
the method described in FIG. 3. In particular, FIG. 6 similarly
illustrates the use of two or more memory spaces, which can
be subsequently copied, concatenated, or otherwise used to
prepare the virtual server image. As shown in FIG. 6, the
appliance builder 402 reads the configuration file 404, and
uses the instructions therein to determine the type of hyper-
visor, and to locate a software application code and software
application data. A first memory space 430 is created within
the system memory 400 for use by the virtual server image,
the first memory space/virtual server image initialized with
bootloader code 408, and a bootable component of the Java
virtual machine 410 is written therein. A second memory
space 440 is then created that will contain the image file
system storage, and a non-bootable component of the Java
virtual machine 414 is written therein, together with the appli-
cation code and data. The bootloader code is then configured
416 to execute the bootable component of the Java virtual
machine, and the bootable component of the Java virtual
machine is configured 418 to execute the non-bootable part of
the Java virtual machine. The second memory space is then
written into the first memory space, and the first memory
space is then written to a virtual server file image 420, which
can then be deployed throughout a cloud of hypervisors. In
accordance with an alternative embodiment the first memory
space can be transmitted over a network to a cloud for deploy-
ment without storing a local file image.

FIG. 7 shows an illustration of how a virtual server image
can be deployed to a cloud, accordance with an embodiment.
As shown in FIG. 7, once the virtual server file image 502 is
created, an administrator 504 can deploy the virtual server file
image throughout a cloud 506 of hypervisors 512, 522, 532,
542 (each associated with one or more computers 510, 520,
530, 540), using the management tools 508 generally pro-
vided with such cloud environments.

Reconfiguring of Virtual Machine Image

Also disclosed herein is a system and method that can be
used to reconfigure a virtual server image comprising a Java
virtual machine and a Java application, that is suitable for
cloud deployment. In accordance with an embodiment, the
system and method allows for updating a Java virtual machine
and its configuration, inside a virtual server image. In accor-
dance with another embodiment, the Java virtual machine is
bootable and comprises a minimal operating system suitable
only to run a single Java virtual machine instance. In accor-
dance with another embodiment, the system and method
allows for updating the Java application within the virtual

10

15

20

25

30

35

40

45

50

55

60

65

8

server image. In particular, the virtual server image can be
compatible with any hypervisor for server virtualization and
the application virtual machine can be a Java Virtual Machine
(JVM) or any other virtual machine for running software
applications.

Cloud computing is generally defined as a form of com-
puting in which dynamic and/or virtualized resources are
provided as services over a distributed network of physical
computing machines or servers, such as the Internet. Client
processes, software applications, and users thereof, are not
required to have explicit knowledge or control over the tech-
nology infrastructure within the cloud. Instead, they can
request or call upon services from the cloud, which are then
provided by other providers within the cloud. As such, cloud
computing promises software application developers with an
easy means way of deploying their application to run simul-
taneously upon thousands of servers in a cloud.

To date, different solutions of deploying software applica-
tions in a cloud have emerged that are generally cloud spe-
cific, i.e. the applications need to conform to a cloud/hyper-
visor specific application program interface (API) to run on
their servers. Using this methodology, it is not easy for a cloud
customer to migrate an application from one cloud provider to
another cloud provider.

Cloud providers can address this problem somewhat by
offering hypervisors in their clouds. Generally, a hypervisor
acts as a layer between a server’s hardware and its operating
system. This provides an abstraction layer that allows each
physical server to run one or more virtual servers, and effec-
tively decouples the operating system and its applications
from the underlying physical server. When used in a cloud,
the cloud customer can supply a virtual machine image which
contains the customer application to the hypervisor. The
image will then be booted in potentially thousands of hyper-
visors in the cloud. Since there are generally only a few
hypervisor types this approach standardizes the format for
how the application developer has to package the application.
Instead of creating a standalone application that fits into a
specific cloud API, the developer now has to create a suitable
virtual machine image.

U.S. patent application Ser. No. 12/476,103, titled “SYS-
TEMAND METHOD FOR CONVERTING A JAVA APPLI-
CATION INTO A VIRTUAL SERVER IMAGE FOR
CLOUD DEPLOYMENT?, filed Jun. 1, 2009, the disclosure
of'which is provided above and is also herein incorporated by
reference, teaches how to create such a virtual machine image
automatically from a Java application. Such a created virtual
machine image can be large, depending on the Java applica-
tion contained therein. The image can also grow in size when
the virtual machine image is executed. For example, applica-
tion generated data and log files can be stored within the
image, and such an image can grow to several gigabytes in
size.

Since it is usually unavoidable that the Java application or
the JVM contained within the virtual machine image will
have to be updated there is a need for a tool that can efficiently
update such a virtual server image and do so without disturb-
ing the accumulated application data.

In accordance with an embodiment, the system includes a
virtual server image updater, that allows the system to take a
virtual server image and reconfigure it according to a speci-
fication within a virtual server image patch. The reconfigured
virtual server image can then be deployed in a hypervisor, or
for example within a cloud ofhypervisors. In accordance with
another embodiment the virtual server image patch is distrib-
uted to the computers within a cloud and applied locally on
each computer. In another embodiment the Java application is

US 9,239,814 B2

9

suspended, followed by a shutdown of the virtual server
image, the virtual server image is then patched, and finally the
virtual server is booted and the Java application resumed.

In accordance with an embodiment, the updater will create
an inverse virtual server image patch that, when applied to the
reconfigured virtual server image, will restore it to its original
state. The virtual server image updater addresses the follow-
ing problems or features:

Efficiency of updating a virtual server image. The bootable
part of the Java virtual machine is significantly smaller
than a general purpose operating system. This makes it
possible to upgrade both the bootable, and the non-
bootable, part of the JVM with a minimal patch file.

Ability to update properties in the bootable part of the
JVM, comprising how many cpu’s to expose to the non-
bootable part of the JVM, as well as the maximum
amount of physical ram and disk.

Ability to update the startup arguments for the non-boot-
able part of the JVM.

Ability to reconfigure the Java application and its startup
arguments without disturbing the Java application data
and state.

Ability to rewrite the virtual server image from one hyper-
visor to a different hypervisor without disturbing the
Java application data or state.

Ease of use. An administrative person is provided with a
tool that works on finished appliances without the need
for unpacking, patching and then recreating the appli-
ance.

A typical use of the virtual server image updater would be
to take a virtual server image comprising a Weblogic Virtual
Edition (VE) installation and reconfigure the virtual server
image in such a way that: the Java virtual machine is upgraded
to a newer version, both the bootable part and the non-boot-
able part; the bootable part of the Java virtual machine should
use four virtual cpu’s; the startup arguments for non-bootable
part of the Java virtual machine that later starts Weblogic VE
are modified to include a -Xms512M, to set the startup size of
the Java heap; and a jar file within the Weblogic installation is
replaced with a new jar file, and a configuration file is
updated.

java-jar updater.jar [patch_file] [virtual_server_image file|

In accordance with an embodiment, a patch file can be
created for this setup as:

<reconfigure>
<new-bootable> . . Base64 encoded archive . .. </new-bootable>
<add-to-bootable-config>-cpu=4 < /add-to-bootable-config>
<new-JVM> . . Base64 encoded archive . . . </new-JVM>
<add-to-jvm-config>-Xms512M< / add-to-jvm-config>
<new-jar-file file=" /app/lib/setup.jar” > .. Base64 encoded

jar. ..

</new-jar-file>
<patch file="/app/etc/setup.cfg” > . . Base64 encoded diff . . .
</patch>

</reconfigure>

FIG. 8 shows an illustration of a system in accordance with
an embodiment of the invention. As shown in FIG. 8, the
system includes a computer 602 with a general operating
system executing thereon. The computer maintains a virtual
server image updater 604, comprising a file system mounter
608, and a modifier 610. The updater works on a virtual server
image 612, comprising a bootstrap (or bootsector) configu-
ration 614, and a file system 616. The file system comprises
the bootable part ofthe JVM 618, the non-bootable part of the
JVM 620, the software application code 622, and the software
application data 624.

10

15

20

25

30

35

40

45

50

55

60

65

10

In accordance with an embodiment, the modifier 610 reads
avirtual server image patch 626 comprising one or more of a
new bootable part of the JVM 628, a reconfiguration of the
bootable part of the JVM 630, a new non-bootable part of the
JVM 632, a reconfiguration of the non-bootable part of the
JVM 634, a new software application code 638, and a recon-
figuration of the software application 640.

When the updater has performed the changes to the virtual
server image as specified by the virtual server image patch, an
inverse patch 642 is generated. The inverse patch comprises
the previous bootable part of the JVM 644, the previous
configuration of the bootable part 646, the previous JVM 648,
the previous configuration of the JVM 650, the previous
software application code 652, and the previous configuration
for the software application 654. If the updater 604 is imme-
diately executed with the inverse image patch 642 on the
virtual server image 612, then all the changes are reversed.

FIG. 9 shows a flowchart of a method inaccordance with an
embodiment, for generating a Java virtual machine (JVM)
appliance. In accordance with an embodiment, the appliance
builder is first started on the system as a standard Java appli-
cation, such as:

java-jar updater.jar [patch_file| [virtual_server_image file]

As shown in FIG. 9, in step 702, the updater reads the patch
file, and uses the instructions from the patch file to determine
how to reconfigure the virtual server image. In step 704, the
updater mounts the file system located within the virtual
server image. A file system contained within a file can gen-
erally be mounted using operating system tools (usually a
loop-back device). The code to read and write the file system
can also be implemented in the updater itself. In accordance
with an embodiment, the file system is an ext2 file system
commonly used in the operating system GNU/Linux, and the
ext2 file system read and write, as well as the updater, are
implemented in Java.

In step 706, if the patch so requires, the bootable part of the
JVM is replaced with the one supplied within the patch. In
accordance with an embodiment, the bootable part of the
JVM is located within a subdirectory named /baremetal
within the file system within the virtual server image. In an
embodiment the bootable binary comprises /baremetal/boot-
bin. The updater will replace this directory and its contents
with the bootable part supplied by the patch. In step 708, if the
patch so requires, the bootable part of the JVM is reconfig-
ured, for example by updating the /bm.conffile located within
the file system using the specification from the patch file, (in
an embodiment using a process similar to how a standard
posix tools diff/patch works).

In step 710, if the patch so requires, the non-bootable part
of'the JVM is replaced (in an embodiment it is located within
the subdirectory /jvm) using the same process as the boot-
able-part of the JVM was replaced. In step 712, the configu-
ration for starting the non-bootable part of the JVM is
changed in the same way as the configuration for the bootable
part. In accordance with an embodiment the configurations
for both the bootable and the non-bootable parts are located
within the same /bm.conf file.

In step 714, if the patch so requires the system applies
changes to the software application code (in an embodiment
located within the directory/application). In step 716, if the
patch so requires the system reconfigures the software appli-
cation in the same way as the previous reconfigurations were
performed.

In step 718, if the patch so requires, the bootstrap configu-
ration is updated. For example, for virtual server images
compatible with VMWare, the bootstrap configuration is
embedded in the bootsector of the virtual server image. For

US 9,239,814 B2

11

virtual server images compatible with Xen/OracleVM the
bootstrap configuration is located within the subdirectory
/boot/menu.cfg within the file system within the virtual server
image.

In accordance with an embodiment, in step 720, an inverse
patch file is generated by the updater. If the inverse patch file
is applied to the reconfigured virtual server image, then the
original state will be restored. The inverse patch comprises
information from the virtual server image (in an embodiment
the subdirectory /baremetal), and can therefore not be created
before the actual patch is applied to the virtual server image.
The other changes are easily calculated from the patch file, for
example:

add-to-jvm-config
is replaced with

remove-from-jvm-config

FIG. 10 shows an illustration of how a virtual server image
can be reconfigured and then deployed to a cloud, in accor-
dance with an embodiment. As shown in FIG. 10, the virtual
server image updater 800 updates a virtual server image to
create an updated or reconfigured virtual server image 802,
using the virtual server image patch file 804. The virtual
server image is as a result updated, and an inverse patch file is
generated 806. The inverse patch file is useful if the patched
virtual server image misbehaves, or for any other reason the
original behavior must be restored. The new virtual server
image is then distributed (for example, in an embodiment by
using NFS or scp (secure copy)) to one or more computers
808, 816 and 824 in a cloud 807, wherein each of the com-
puters comprises one or more hypervisors 810, 812, 814, 818,
820, 822, 826, 828. The hypervisors then boot the reconfig-
ured virtual server image.

FIG. 11 shows an illustration of how virtual server images
already deployed in a cloud can be reconfigured, in accor-
dance with an embodiment. As shown in FIG. 11, a virtual
server image patch file 900 is distributed (again, for example,
using NFS or scp (secure copy)) to the computers within a
cloud 901. In each of the computers 902, 904, 906, 908 the
hypervisors are shut down, and a virtual server image updater
914, 922 is run for each virtual server image 910, 918. The
hypervisors are then restarted on the updated virtual server
images. The generated inverse patch files are collected 916
(again, for example, using NFS or scp (secure copy) or locally
at each computer) to be used later, if the patch has to be rolled
back. In accordance with an embodiment the updater is part of
the hypervisor. In accordance with other embodiments the
updater fetches the patch automatically from a patch server.

FIG. 12 shows an illustration of how a virtual machine
image can be reconfigured from a first hypervisor format to a
second or different hypervisor format, in accordance with an
embodiment. As shown in FIG. 12, the virtual server image
1000 is compatible with a VM Ware hypervisor, and therefore
the image is formatted as if it was the contents of a hard drive,
e.g. it will have partitions and a bootsector 1002 in the master
boot record. One of the partitions will be the file system 1004
comprising the bootable 1008 and non-bootable 1010 part of
the JVM, as well as the software application code 1012 and
the software application data 1014. In accordance with an
embodiment, the updater can rewrite this virtual server image
into a virtual server image compatible with, e.g. an OracleVM
hypervisor 1016, by extracting only the partition containing
the image file system 1018. The new virtual server image
contains the copied contents 01008, 1010, 1012, 1014 stored
into 1024, 1026, 1028, 1030. The boot information embedded
in the bootsector that was previously the exact location (head/
track/sector) on disk for /baremetal/boot.bin, will instead

10

15

20

25

30

35

40

45

50

55

60

65

12

now be stored as a file name in the bootstrap configuration
1020 located within the file system (in an embodiment /boot/
menu.ctg).

The above action is provided by way of example. In accor-
dance with various embodiments, the updater is not limited to
the above actions, but can also, e.g. resize the appliance to
remove excessive virtual server image memory that is not in
use, or to increase it for anticipated future use, or other
actions. The updater can also record which patches have been
applied to the virtual server image (in an embodiment this is
recorded in the /patch_history.txt file within the file system
within the virtual server image).

The present invention may be conveniently implemented
using one or more conventional general purpose or special-
ized digital computer, computing device, machine, or micro-
processor, including one or more processors, memory and/or
computer readable storage media programmed according to
the teachings of the present disclosure. Appropriate software
coding can readily be prepared by skilled programmers based
on the teachings of the present disclosure, as will be apparent
to those skilled in the software art.

In some embodiments, the present invention includes a
computer program product which is a storage medium or
computer readable medium (media) having instructions
stored thereon/in which can be used to program a computer to
perform any of the processes of the present invention. The
storage medium can include, but is not limited to, any type of
disk including floppy disks, optical discs, DVD, CD-ROMs,
microdrive, and magneto-optical disks, ROMs, RAMs,
EPROMs, EEPROMs, DRAMs, VRAMs, flash memory
devices, magnetic or optical cards, nanosystems (including
molecular memory ICs), or any type of media or device
suitable for storing instructions and/or data.

The foregoing description of the present invention has been
provided for the purposes of illustration and description. It is
not intended to be exhaustive or to limit the invention to the
precise forms disclosed. Many modifications and variations
will be apparent to the practitioner skilled in the art. The
embodiments were chosen and described in order to best
explain the principles of the invention and its practical appli-
cation, thereby enabling others skilled in the art to understand
the invention for various embodiments and with various
modifications that are suited to the particular use contem-
plated. It is intended that the scope of the invention be defined
by the following claims and their equivalence.

What is claimed is:

1. A system for converting a software application into a
virtual server image, comprising:

acomputer including a processor, and an operating system;

a memory space in the computer for creating a virtual

server image;

a Java virtual machine on the computer configured to

execute a software application; and

a builder application that operates to

receive instructions that specify a particular type of
hypervisor to be used with the virtual server image,

determine, based on the specified particular type of
hypervisor, whether to initialize the memory space
with bootloader code,

write a bootable component of the Java virtual machine
into the memory space,

write a non-bootable component of the Java virtual
machine, together with the software application, into
the memory space,

configure the bootable component of the Java virtual
machine in the memory space to execute the non-
bootable component therein, and

US 9,239,814 B2

13

write the memory space to the virtual server image for
deployment to the specified particular type of hyper-
visor.

2. The system of claim 1, wherein the builder application
further operates to configure the bootloader code to execute
the bootable component of the Java virtual machine in the
memory space.

3. The system of claim 1, wherein the memory space is
allocated in RAM in the computer.

4. The system of claim 1, wherein the builder application is
further configured to read a configuration file that specifies a
location of code and data of the software application.

5. The system of claim 1, further comprising an updater
that operates to update the software application and the Java
virtual machine without disturbing application data of the
software application.

6. The system of claim 1, wherein the specified particular
type of hypervisor uses the virtual server image as a snapshot
of sectors of a virtual hard disk, and the bootloader code is
written into the memory space.

7. The system of claim 1, wherein configuring the bootable
component to execute the non-bootable component includes
updating the bootable component with a location of the non-
bootable component.

8. A method for converting a software application into a
virtual server image, comprising:

executing a builder application on a computer including a

processor, and a memory space for creating a virtual
server image from a Java virtual machine configured to
execute a software application;
receiving instructions that specify a particular type of
hypervisor to be used with the virtual server image;

determining, based on the specified particular type of
hypervisor, whether to initialize the memory space with
bootloader code;

writing a bootable component of the Java virtual machine

into the memory space;

writing a non-bootable component of the Java virtual

machine, together with the software application, into the
memory space;

configuring the bootable component of the Java virtual

machine in the memory space to execute the non-boot-
able component therein; and
writing the memory space to the virtual server image for
deployment to the specified particular type of hypervi-
SOr.

9. The method of claim 8, further comprising

configuring the bootloader code to execute the bootable
component of the Java virtual machine in the memory
space.

10. The method of claim 8, wherein the memory space is
allocated in RAM in the computer.

11. The method of claim 8, further comprising

reading, via the builder application, a configuration file that

specifies a location of code and data of the software
application.

12. The method of claim 8, further comprising

using an updater to update the software application and the

Java virtual machine without disturbing application data
of the software application.

10

20

25

30

35

40

45

50

55

14

13. The method of claim 8, wherein the specified particular
type of hypervisor uses the virtual server image as a snapshot
of sectors of a virtual hard disk, and the bootloader code is
written into the memory space.

14. The method of claim 8, wherein configuring the boot-
able component to execute the non-bootable component
includes updating the bootable component with a location of
the non-bootable component.

15. A non-transitory computer-readable storage medium,
including instructions stored thereon, which when read and
executed by a computer cause the computer to perform the
steps comprising:

executing a builder application on a computer including a

processor, and a memory space for creating a virtual
server image from a Java virtual machine configured to
execute a software application;
receiving instructions that specify a particular type of
hypervisor to be used with the virtual server image;

determining, based on the specified particular type of
hypervisor, whether to initialize the memory space with
bootloader code;

writing a bootable component of the Java virtual machine

into the memory space;

writing a non-bootable component of the Java virtual

machine, together with the software application, into the
memory space;

configuring the bootable component of the Java virtual

machine in the memory space to execute the non-boot-
able component therein; and

writing the memory space to the virtual server image for

deployment to the specified particular type of hypervi-
SOr.

16. The non-transitory computer-readable storage medium
of claim 15, further comprising

configuring the bootloader code to execute the bootable

component of the Java virtual machine in the memory
space.

17. The non-transitory computer-readable storage medium
of claim 15, wherein the memory space is allocated in RAM
in the computer.

18. The non-transitory computer-readable storage medium
of claim 15, further comprising

reading, via the builder application, a configuration file that

specifies a location of code and data of the software
application.

19. The non-transitory computer-readable storage medium
of claim 15, further comprising

using an updater to update the software application and the

Java virtual machine without disturbing application data
of the software application.

20. The non-transitory computer-readable storage medium
of claim 15, wherein the specified particular type of hypervi-
sor uses the virtual server image as a snapshot of sectors of a
virtual hard disk, and the bootloader code is written into the
memory space.

21. The non-transitory computer-readable storage medium
of claim 15, wherein configuring the bootable component to
execute the non-bootable component includes updating the
bootable component with a location of the non-bootable com-
ponent.

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. 9,239,814 B2 Page 1 of 1
APPLICATION NO. : 14/164503

DATED : January 19, 2016

INVENTOR(S) : Lagergren et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:
In drawings,

On sheet 9 of 12, in FIGURE 9, under reference numeral 706, delete “requiers,” and
insert -- requires, --, therefor.

On sheet 9 of 12, in FIGURE 9, under reference numeral 708, delete “requiers,” and
insert -- requires, --, therefor.

On sheet 9 of 12, in FIGURE 9, under reference numeral 710, delete “requiers,” and
insert -- requires, --, therefor.

On sheet 9 of 12, in FIGURE 9, under reference numeral 712, delete “requiers,” and
insert -- requires, --, therefor.

Signed and Sealed this
Sixteenth Day of August, 2016

Dhecbatle K Zea

Michelle K. Lee
Director of the United States Patent and Trademark Office

